亚洲国产精品视频,在线精品欧美日韩,欧美国产在精品视频观看,久久精品免费一区二区视

行業(yè)新聞

您在這里:

鋰離子電池正負極補鋰技術(shù)

在鋰離子電池首次充電過(guò)程中,有機電解液會(huì )在石墨等負極表面還原分解,形成固體電解質(zhì)相界面膜,永久地消耗大量來(lái)自正極的鋰,造成首次循環(huán)的庫侖效率偏低,降低了鋰離子電池的容量和能量密度。

為了解決這個(gè)問(wèn)題,人們研究了預鋰化技術(shù)。通過(guò)預鋰化對電極材料進(jìn)行補鋰,抵消形成SEI膜造成的不可逆鋰損耗,以提高電池的總容量和能量密度。


一、負極補鋰技術(shù)
常見(jiàn)的預鋰化方式是負極補鋰,如鋰箔補鋰、鋰粉補鋰等,都是目前重點(diǎn)發(fā)展的預鋰化工藝。此外,還有利用硅化鋰粉和電解鋰鹽水溶液來(lái)進(jìn)行預鋰化的技術(shù)。

1 鋰箔補鋰
鋰箔補鋰是利用自放電機理進(jìn)行補鋰的技術(shù)。金屬鋰的電位在所有電極材料中最低,由于電勢差的存在,當負極材料與金屬鋰箔接觸時(shí),電子自發(fā)地向負極移動(dòng),伴隨著(zhù)Li+在負極的嵌入。

在生長(cháng)于不銹鋼基底的硅納米線(xiàn)負極上滴加電解液,再與鋰金屬箔直接接觸,進(jìn)行補鋰。對補鋰后的負極進(jìn)行半電池測試,發(fā)現: 未補鋰的開(kāi)路電壓為1.55V,在0.01~1.00V首次0.1C放電的嵌鋰比容量為3800mAh/g; 補鋰后的硅納米線(xiàn)開(kāi)路電壓為0.25V,首次嵌鋰比容量為1600mAh/g。

將錫碳負極與被電解液浸潤的鋰箔直接接觸180min,進(jìn)行補鋰。用半電池測試,補鋰后錫碳的不可逆比容量由680mAh/g減少到65mAh/g。將該負極構成全電池,1.0C倍率在3.1~4.8V下測試的ICE接近100% ,且循環(huán)穩定,倍率性能較好。

盡管與鋰箔直接接觸,可以實(shí)現負極預鋰化,但預鋰化的程度不易精確控制。不充分的鋰化,不能充分提高 ICE; 而補鋰過(guò)度,可能會(huì )在負極表面形成金屬鋰鍍層。

Z. Y. Cao等對鋰箔補鋰的安全性進(jìn)行了改善,設計的活性材料/聚合物/鋰金屬三層結構負極可在環(huán)境空氣中穩定30~60min,足夠負極進(jìn)行加工。三層結構分別為: 在銅箔上通過(guò)電化學(xué)沉積的金屬鋰層,對鋰層進(jìn)行包覆聚甲基丙烯酸甲酯保護層以及活性材料層。

2 穩定化鋰金屬粉末( SLMP)
鋰粉補鋰是富美實(shí)公司提出的,開(kāi)發(fā)的SLMP比容量高達3600mAh/g,表面包覆了2%~5%的碳酸鋰薄層,可在干燥環(huán)境中使用。將SLMP應用于負極預鋰化,主要有兩種途徑: 在合漿過(guò)程中添加,或直接添加到負極片表面。

常規的負極合漿,使用PVDF/NMP或SBR+CMC/去離子水體系,但SLMP與極性溶劑不兼容,只能分散于己烷、甲苯等非極性溶劑中,因此不能在常規的合漿過(guò)程中直接加入。采用SBR-PVDF/甲苯體系,可將SLMP直接混合在石墨電極漿料中。經(jīng)過(guò)SLMP對負極的預鋰化,在0.01~1.00V、0.05C的條件下,電池的ICE從90.6% 提高到96.2%。

與在合漿過(guò)程中加入相比,SLMP直接加載到干燥的負極表面更簡(jiǎn)單易行。使用SLMP 對硅-碳納米管負極進(jìn)行預鋰化,將質(zhì)量分數為3%的SLMP/甲苯溶液滴在硅-碳納米管負極表面,待甲苯溶劑揮發(fā)后,進(jìn)行壓片、激活。預鋰化后,負極的首次不可逆容量減少了20%~40% 。

3 硅化鋰粉
納米硅化鋰粉的尺寸很小,更有利于在負極中的分散。此外,其已處于膨脹狀態(tài),循環(huán)過(guò)程中的體積變化不會(huì )對整個(gè)電極的結構造成影響。目前,對硅化鋰粉補鋰添加劑的研究較少,僅有J. Zhao等對硅化鋰粉的補鋰性能和穩定性改善進(jìn)行了研究。

半電池體系以0.05C在0.01~1.00V充放電,添加15%硅化鋰粉后,硅負極的ICE從76% 提高到94% ; 添加9%硅化鋰粉的中間相炭微球的ICE從75%提高到99% ; 添加7%硅化鋰粉的石墨負極的ICE從87%提高到99%。

4 電解鋰鹽水溶液進(jìn)行補鋰
無(wú)論是使用鋰箔、SLMP還是硅化鋰粉來(lái)補鋰,都要涉及金屬鋰的使用。金屬鋰價(jià)格高、活性大,操作困難,儲存與運輸需要高額的費用用于保護。如果補鋰過(guò)程不涉及金屬鋰,可以節約成本,提高安全性能。


二、正極補鋰技術(shù)
典型的正極補鋰是在正極合漿過(guò)程中添加少量高容量材料,在充電過(guò)程中,Li+從高容量材料中脫出,補充首次充放電的不可逆容量損失。目前,作為正極補鋰添加劑的材料主要有: 富鋰化合物、基于轉化反應的納米復合材料和二元鋰化合物等。

1 富鋰化合物
使用富鋰材料Li1+xNi0.5Mn1.5O4來(lái)補償Si-C|LiNi0.5Mn1.5O4全電池的不可逆容量損失。使用混合正極的電池以0.33C在3.00~4.78V循環(huán)100次的容量保持率為75% ,而使用純LiNi0.5Mn1.5O4正極的電池僅為51%。

Li2NiO2也可作為正極補鋰添加劑使用,但在空氣中的穩定性較差。可使用異丙醇鋁對 Li2NiO2進(jìn)行改性,合成了在空氣中穩定的氧化鋁包覆的Li2NiO2材料,補鋰效果優(yōu)異。

2 基于轉化反應的納米復合材料
盡管富鋰化合物作為補鋰添加劑取得了一定的效果,但首次的補鋰效果仍受限于較低的比容量。基于轉化反應的納米復合材料,由于存在較大的充/放電電壓滯后,在電池首次充電過(guò)程中可貢獻出大量的鋰,而嵌鋰反應在放電過(guò)程中卻不能發(fā)生。

Y.M.Sun等研究了M/氧化鋰、M/氟化鋰、M/硫化鋰 (M=Co、Ni和Fe) 作為正極補鋰添加劑的性能。

通過(guò)合成的納米Co/氧化鋰復合材料在以50mA/g在4.1~2.5V循環(huán),首次充電的比容量達619mAh/g,放電比容量?jì)H為10mAh/g; 在環(huán)境空氣中暴露8h后,脫鋰比容量?jì)H比初始值小了51mAh/g,放置2d后,脫鋰比容量仍有418mAh/g,具有良好的環(huán)境穩定性,可與商業(yè)化電池的生產(chǎn)過(guò)程兼容。

氟化鋰的鋰含量高、穩定性好,是一種潛在的正極補鋰材料。利用轉化反應構造的M/LiF納米材料,可以克服 LiF 電導率和離子導率低、電化學(xué)分解電位高、分解產(chǎn)物有害等問(wèn)題,使氟化鋰成為一種優(yōu)良的正極補鋰添加劑。硫化鋰的理論容量達到1166mAh/g,但作為補鋰添加劑使用,仍有很多問(wèn)題需要解決,如與電解液的兼容性、絕緣、環(huán)境穩定性差等。

盡管較富鋰化物有更高的補鋰容量,但基于轉化反應的納米復合材料在首次補鋰后,會(huì )殘余沒(méi)有活性的金屬氧化物、氟化物和硫化物等,降低電池的能量密度。

3 二元鋰化合物
二元鋰化合物的理論比容量要高得多。Li2O2、Li2O 和Li3N的理論比容量分別達到1168mAh/g、1797mAh/g和2309mAh/g,只需要少量的添加,就可實(shí)現類(lèi)似的補鋰效果。理論上,這些材料在補鋰后的殘余物是O2、N2等,可在電池形成SEI膜過(guò)程中排出的氣體。

將商業(yè)化的Li3N研磨成粒徑為1~5μm的粉體,用作補鋰添加劑。半電池體系下,添加了1%和2%Li3N的LiCoO2電極,以0.1C在3.0~4.2V的首次充電比容量分別為167.6 mAh/g和178.4mAh/g,較純LiCoO2上升了18.0mAh/g、28.7mAh/g。

將商業(yè)化Li2O2與NCM混合使用,補償石墨負極首次充電過(guò)程中的鋰損失。混合電極中的NCM起到了活性材料和催化劑的雙重作用。為了高效地催化分解Li2O2,在正極中加入1%球磨6h得到的NCM。全電池在2.75~4.60V充放電,0.3C可逆比容量為165.4 mAh/g,較石墨|NCM全電池提高了 20.5% 。

測試顯示,Li2O2分解釋放的氧氣會(huì )消耗全電池中有限的Li+,導致添加Li2O2的全電池存在明顯的容量衰減,但在排出氣體后,容量即可得到恢復。電池在實(shí)際生產(chǎn)過(guò)程中的首次充電是在開(kāi)放體系中進(jìn)行的,密封前會(huì )排出形成SEI膜和一些副反應產(chǎn)生的氣體,因此可減小O2釋放造成的影響。

三、總結
對比兩種補鋰方法,負極補鋰路線(xiàn)補鋰試劑的( 鋰箔、鋰粉和硅化鋰粉) 容量高,但操作復雜、對環(huán)境要求高; 通過(guò)在正極中添加補鋰添加劑的正極補鋰路線(xiàn)勝在安全穩定性高,與現有電池生產(chǎn)工藝兼容性好。

未來(lái)負極補鋰技術(shù)的研究應著(zhù)重改進(jìn)其在電池制造過(guò)程中的穩定性,開(kāi)發(fā)與工業(yè)化生產(chǎn)相兼容且工藝簡(jiǎn)單的技術(shù)方案; 正極補鋰則應著(zhù)重開(kāi)發(fā)補鋰容量高,使用量小,補鋰后殘余量小的添加劑體系。


Go to Top